Exercise 55

(a) Find an equation of the tangent line to the curve $y=2 /\left(1+e^{-x}\right)$ at the point $(0,1)$.
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

Solution

A point on the tangent line is known, so all that's needed is its slope. Take a derivative of the given function

$$
\begin{aligned}
y^{\prime}=\frac{d}{d x}\left(\frac{2}{1+e^{-x}}\right) & =\frac{\left[\frac{d}{d x}(2)\right]\left(1+e^{-x}\right)-\left[\frac{d}{d x}\left(1+e^{-x}\right)\right](2)}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{(0)\left(1+e^{-x}\right)-\left[\left(e^{-x}\right) \cdot \frac{d}{d x}(-x)\right](2)}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{-\left[\left(e^{-x}\right) \cdot(-1)\right](2)}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{2 e^{-x}}{\left(1+e^{-x}\right)^{2}}
\end{aligned}
$$

and evaluate it at $x=0$.

$$
y^{\prime}(0)=\frac{1}{2}
$$

Therefore, the equation of the tangent line to $y=2 /\left(1+e^{-x}\right)$ at $(0,1)$ is

$$
y-1=\frac{1}{2}(x-0) .
$$

Below is a graph showing the function and the tangent line.

